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In problems involving the dispersion of hazardous gases in the atmosphere, the
distribution of high concentrations is often of particular interest. We address the
modelling of the distribution of high concentrations of a dispersing passive scalar at
large Péclet number, concentrating on the case of steady releases. We argue, from
the physical character of the small-scale processes, and from the statistical theory of
extreme values, that the high concentrations can be fitted well by a Generalized Pareto
Distribution (GPD). This is supported by evidence from a range of experiments.
We show, furthermore, that if this is the case then the ratios of successive high-
order absolute moments of the scalar concentration are linearly related to the
reciprocal of the order. The linear fit thus obtained allows the GPD parameters
to be determined from the moments. In this way the moments can be used to
deduce the properties of the high concentrations, in particular the maximum possible
concentration θmax = θmax(x). We argue, on general physical grounds, that θmax/C0

(where C0 = C0(X) is the centreline mean concentration, and X is the downstream
distance from the source) decreases to zero very far from the centreline, but that the
decrease takes place on a length scale much larger than the mean plume width (because
it is controlled by the relatively slowly acting molecular diffusion, rather than the
fast turbulent advection). Thus, over the distances for which accurate measurements
can be made, we expect θmax/C0 to be approximately constant throughout the plume
cross-section. On the centreline, we argue that θmax/C0 increases downstream from
the source, reaches a maximum and then decreases, ultimately tending to 1 far
downstream. In support of these deductions we present results for some high-quality
data for a steady line source in wind tunnel grid turbulence. Finally, we apply to this
problem some existing models for the relationships between moments. By considering
the behaviour far from the centreline in these models, and linking the moments
to the high concentrations, we derive relationships between the model parameters.
This allows us to derive an expression for θmax/C0 which depends on a total of 5
parameters, and (weakly) on C/C0 (where C = C(x) is the local mean concentration).
Comparison with the data is encouraging. We also discuss possible methods for
modelling the spatial variation of these 5 parameters.

1. Introduction
The dispersion of a passive scalar in a turbulent flow is governed by two

fundamental physical processes: advection by the turbulent velocity field, and
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molecular diffusion. Most turbulent flows in environmental and engineering
applications have large Péclet number Pe = ul/κ , where u and l are appropriate
velocity and length scales for the turbulent fluctuations, and κ is the molecular
diffusivity. In this case turbulent advection acts on a much faster time scale than
molecular diffusion, the ratio of the time scales being given by Pe if the length
scales for the velocity and concentration fields are comparable: see the Appendix for
some more detailed arguments about the time scales. Advection acts to stretch the
scalar cloud or plume out into thin sheets and strands (Batchelor 1952), as observed
experimentally (Dahm, Southerland & Buch 1991; Corriveau & Baines 1993; Buch &
Dahm 1996, 1998). Although molecular diffusion is a much slower process, it is
nevertheless a vital one: it is the only means by which the scalar concentration can be
altered, and it limits the smallest scales which can be present in the scalar field. For
Schmidt number ν/κ of order 1 or greater this smallest scale is of the order of the
conduction cutoff length λc = (νκ2/ε)1/4 (Batchelor 1959), where ν is the kinematic
viscosity and ε is the turbulent energy dissipation rate per unit mass. Molecular
diffusion also has the effect of dissipating the variance and higher moments of the
concentration (Batchelor 1959; Chatwin & Sullivan 1979, 1990b).

In practical problems, for example that of assessing the hazards associated with
accidental releases of toxic or flammable gases, it is desirable to know the temporal
and/or spatial variation of the concentration moments and, ideally, of the probability
density function (p.d.f.) of concentration. Often it is the high concentration tail of
the p.d.f. which is of particular interest, especially for toxic gases for which high
concentrations tend to be disproportionately harmful (see e.g. ten Berge, Zwart &
Appelman 1986; Davies 1989; Griffiths 1991). Legal regulations governing such gases
are often expressed in terms of high concentrations; for example, in the UK the
Control of Substances Hazardous to Health Regulations 2002 impose short-term
workplace exposure limits on the concentrations of many hazardous gases. (For a full
assessment of the hazards, further information such as the spatial and temporal scale
and structure of high concentrations, and the response characteristics of the exposed
organism, would also be required.)

Chatwin & Sullivan (1990a) exploited the very different time scales of advection
and diffusion to suggest a simple framework for the central moments of concentration.
They argued that, since diffusion is a slow process, the structure of the moments will
be close to that in the absence of molecular diffusion. For a uniform concentration
source, the only possible concentrations in the absence of diffusion are zero
and the source concentration θ1. The p.d.f. of concentration can then be written
as

p(θ) = (1 − π)δ(θ) + πδ(θ − θ1),

where π(x, t) is the probability of being in the source fluid and δ is the Dirac delta
function. The mean concentration C(x, t) = E {Γ (x, t)}, where Γ is the concentration
and E {·} denotes the expected value, or ensemble mean, is then given by

C = (1 − π)

∫
θδ(θ) dθ + π

∫
θδ(θ − θ1) dθ = πθ1,

and the nth central moment

μn(x, t) = E {[Γ (x, t) − C(x, t)]n}
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is given by

μn = (1 − π)

∫
(θ − C)nδ(θ) dθ + π

∫
(θ − C)nδ(θ − θ1) dθ

= (1 − π)(−C)n + π(θ1 − C)n.

Hence

μn

θn
1

=
C

θ1

(
1 − C

θ1

)n

+ (−1)n
(

1 − C

θ1

) (
C

θ1

)n

. (1.1)

Essentially, Chatwin & Sullivan (1990a) proposed that well downstream in self-
similar turbulent flows (1.1) could be modified to take account of the effect of
molecular diffusion. This was done, firstly, by replacing the source concentration θ1

by a representative local value αC0, where α is a constant and C0 is the centreline
mean concentration. Secondly, a constant of proportionality βn was introduced to
take account of dissipation and of the increased background concentration resulting
from diffusion out of the sheets and strands of high concentration:

μn

(αC0)n
= βn{Ĉ(1 − Ĉ)n + (−1)n(1 − Ĉ)Ĉn}, (1.2)

where

Ĉ =
C

αC0

.

Because of dissipation, β would be expected to be less than 1. Chatwin & Sullivan
(1990a) found that observations from a number of experiments could be fitted well
by (1.2) with a constant value of α, and β approximately constant in the cross-stream
direction.

When considering higher moments of concentration, and associated p.d.f.s, it is
often useful to consider normalized moments, in particular the skewness K3, kurtosis
K4 and higher-order equivalents Kn, defined by

Kn =
μn

μ
n/2
2

for n = 3, 4, . . . . (1.3)

Mole & Clarke (1995) showed that (1.2) implies that

K4 = K2
3 + 1, K5 = K3

3 + 2K3, (1.4)

and gave a general expression for Kn as a function of K3. They analysed experimental
data from a steady release close to the ground in the field, and suggested that (1.4)
should be replaced by

K4 = a4K
2
3 + b4, K5 = a5K

3
3 + b5K3, (1.5)

where a4, b4, a5 and b5 are constants. This formulation has been shown to hold to a
good approximation in a variety of experiments, including plumes in atmospheric
boundary layers under various stability classes (Mole & Clarke 1995; Lewis,
Chatwin & Mole 1997), clouds in the wind tunnel with varying density and with
different forms of fence (Chatwin & Robinson 1997), and plumes in wind tunnels
(Schopflocher & Sullivan 2005; Schopflocher, Smith & Sullivan 2007).

Sawford & Sullivan (1995) argued that (1.2) would describe the lateral moment
structure, with α and β varying with time for an instantaneous release, or with
downstream distance for a steady release. They also generalized (1.2) to the case of
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non-uniform source concentration by introducing additional parameters λn for n � 3:

μ2

(αβC0)2
= Ĉ(1 − Ĉ),

μ3

(αβC0)3
= Ĉ

(
λ2

3 − 3Ĉ + 2Ĉ2
)
,

μ4

(αβC0)4
= Ĉ

(
λ3

4 − 4λ2
3Ĉ + 6Ĉ2 − 3Ĉ3

)
,

...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.6)

If λn = 1 for all n then (1.6) reduces to (1.2). As with α and β , the λn could be expected
to vary in time for an instantaneous release, or with downstream distance for a steady
release. Sawford & Sullivan (1995) fitted these parameters to data from a steady line
source experiment in wind tunnel grid turbulence (Sawford & Tivendale 1992), finding
that they varied very slowly with downstream distance (see Table 1 of Schopflocher
et al. (2007)). Similarly, we would expect the parameters a4, b4, a5, b5 and higher-order
equivalents to be approximately constant in the cross-stream direction, but to vary
slowly with time or downstream distance. This has been confirmed for the Sawford &
Tivendale (1992) experiments by Schopflocher & Sullivan (2005) and Schopflocher
et al. (2007). Schopflocher & Sullivan (2005) also showed that the expression for K4

in (1.5) followed approximately from (1.6). The relationships between the moments
predicted by Chatwin & Sullivan (1990a) and Sawford & Sullivan (1995) have been
found to agree reasonably well with measurements from a range of experiments,
including jets, wakes, plumes, uniformly sheared flow and buoyant jets (Chatwin &
Sullivan 1990a; Moseley 1991; Sawford & Sullivan 1995; Ye 1995).

In this paper, we argue that β is principally a measure of the dissipation
accomplished by molecular diffusion, tending to zero in the limit of infinite diffusion
time, and that we do not, therefore, expect β to be constant across the whole plume
cross-section. Any source material arriving far from the centreline will have taken
a long time to get there, because of the large distance involved. It will, therefore,
have been acted on by diffusion for a long time, so we expect that β will tend to
zero far from the centreline. However, the length scale on which β decreases will
be much greater than that on which the mean concentration C decreases, since the
latter is dominated by the much faster advection. Where C becomes very small, it
is usually difficult to obtain reliable measurements, so we expect measured values
of β to be approximately constant in the cross-stream direction over the range of
distances for which measurements are made, consistent with the results described
above.

The framework outlined above provides a simple description of the moments,
enabling estimates to be made of higher moments given knowledge of the mean
concentration. Given the first few moments, estimates can be made of the p.d.f. (see
e.g. Derksen & Sullivan 1990). However, while such an approach may well give a
good approximation to the bulk of the p.d.f., it will not necessarily give good results
for the high concentration tail. The main aim of the present paper is to utilize the
above framework to derive results for this tail, in particular for the maximum possible
concentration. Away from the source, the latter will always be less than the largest
source concentration, because of molecular diffusion.
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Figure 1. Examples of the possible GPD shapes.

As described above, the turbulent velocity field stretches the cloud or plume out
into thin sheets or strands. These become thin enough for molecular diffusion to
act strongly across them, so they cannot become thinner than the conduction cutoff.
The lower-concentration part of the p.d.f. is dominated by concentrations in fluid
which does not emanate from the source, and into which scalar has diffused from
source fluid. The high-concentration tail of the p.d.f., on the other hand, represents
the concentration in the thin sheets and strands which contain most of the source
fluid, and which are relatively rare, except very close to the source or soon after
release. Since these sheets and strands are controlled by the balance between the
local stretching by the velocity field, and molecular diffusion across them, we might
expect the tail of the concentration p.d.f. to have a universal character, regardless of
the details of the larger scale flow. Further support for such universality is provided
by statistical extreme value theory (see e.g. Kristensen, Weil & Wyngaard 1989;
Lewis & Chatwin 1995b; Mole et al. 1995; Anderson, Mole & Nadarajah 1997;
Munro, Chatwin & Mole 2001; Schopflocher 2001; Schopflocher & Sullivan 2002 for
previous applications to turbulent dispersion). In particular, this theory shows that
(Pickands 1975), under certain regularity conditions, the distribution of a random
variable, conditional on being above a high threshold value, can be approximated by
the Generalized Pareto Distribution (GPD), which has the p.d.f.

g(θ) =
1

a

(
1 − kθ

a

)1/k−1

, (1.7)

where k and a are parameters, with a positive. Since in turbulent dispersion there is a
finite maximum possible concentration we expect that, when applied to concentration
in the present context, k will also be positive, with (1.7) then being valid for

0 � θ � θmax,

where

θmax =
a

k
< θ2,

θ2 being the largest source concentration. The parameter k determines the shape of
g(θ). For 0 <k < 1/2, g(θ) is zero and has zero gradient at θ = θmax; for 1/2 < k < 1 it
is zero at θ = θmax but has infinite gradient there; while for k > 1, g(θ) is unbounded
at θ = θmax. Examples of these three shapes are given in figure 1. In general we expect
a, k and θmax to depend on temporal and spatial location.

We also expect dependence of the high-concentration tail on the Reynolds number
Re = ul/ν and Péclet number Pe = ul/κ . A simple illustration of this is provided by
the conduction cutoff length (νκ2/ε)1/4, at which scale diffusion acts strongly and we
expect the largest concentrations to be found, which is proportional to Re−1/4Pe−1/2.
So we expect the tail to be GPD, but the parameters to depend on Re and Pe. In
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the Appendix we give some arguments suggesting that θmax/C0 will typically be an
increasing function of Re and Pe.

The main aim of this paper is to use (1.5), (1.6) and (1.7) to derive expressions
for the parameters governing high concentrations, thus providing a relatively simple
way of describing and modelling high concentrations. In § 2 we show that the ratio
of successive high-order absolute moments can be expressed as a linear function of
the reciprocal of the order n, and that this enables the identification of the GPD
parameters a, k and θmax from experimental data. In § 3 we show that applying (1.5)
and (1.6) in the periphery of a plume gives a relationship between the an and the λn.
Combining this with the result of § 2, we derive expressions for a, k and θmax in terms
of α, β , λ3, a4 and a5, and compare them with the line source, grid turbulence, data
of Sawford & Tivendale (1992).

2. Estimating properties of the distribution of high concentrations from data
2.1. Experimental data

The experimental data we shall use are those of Sawford & Tivendale (1992) for
a steady line source in wind tunnel grid turbulence. The experimental details are
given in Sawford & Tivendale (1992), and Sawford & Sullivan (1995) repeat some
of these details, as well as presenting further analysis of the data (for example of
the first few moments of concentration). Here we summarize the main experimental
details.

The measurements were made in a suction wind tunnel with a rectangular test
section 0.69 m high, 1.07 m wide and 3.3 m long. Turbulence was generated with a
planar ‘punched plate’ grid with circular holes of diameter 0.0208 m in a hexagonal
pattern. The mesh length (i.e. hole spacing) was M = 2.54 × 10−2 m, giving a solidity
ratio of 0.39. The source was a horizontal heated Nichrome wire of diameter
d =0.213 mm placed a distance x0 = 12.2M downstream of the grid. The mean air
speed was U = 5.0 m s−1, with a corresponding Reynolds number UM/ν of 8500,
where ν is the kinematic viscosity of unheated air (1.5 × 10−5 m2 s−1 at 20 ◦C).

Temperature fluctuations were measured with a platinum cold wire 1.27 μm in
diameter and 0.4 mm long. The temperature signal was low-pass filtered at 2 kHz and
sampled at 4096 Hz. Statistics were calculated from 20 separate 1 s samples, i.e. from
a total of 81920 points. Sawford & Sullivan (1995) reported that frequencies up to
1 kHz accounted for about 90 % of the temperature variance near the source, and
over 99 % of the variance far downstream.

The mean temperatures near the source were up to 50 K above background, similar
to the experiments of Stapountzis et al. (1986), but much higher than in Warhaft
(1984). Sawford (2004) showed that, as a result, an enhanced diffusivity is required
to fit the data in the near field. Sawford (2004) also showed that the intensity of
fluctuations is reduced by comparison with the Warhaft data, but that in the far field
these source effects become unimportant. Note that figure 3(a) of Sawford & Sullivan
(1995) shows that in the near field α is smaller for the Sawford & Tivendale data
than for the Warhaft data, but that in the far field the values are similar, while the β

values are comparable.

2.2. A moment-based method for fitting high concentrations

As outlined above, we expect that the GPD given by (1.7) will give a good
approximation to the high-concentration tail of the p.d.f. We want to identify the
parameters a, k and θmax, and, in general, find their temporal and spatial variation.
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A number of methods have been applied previously to estimating these parameters
from data. These fall broadly into two categories.

One approach is to fit the GPD to concentration values above some high threshold,
using a method such as maximum likelihood estimation to carry out the fitting. This
approach was used by Mole et al. (1995), Anderson et al. (1997), Schopflocher (2001)
and Munro et al. (2001), providing confirmation of the good fit provided by the GPD.
This approach has the advantage of using only the high values of concentration
which are expected to be fitted well by the GPD, and avoiding problems at low
concentration levels caused by noise or uncertain baseline (see Lewis & Chatwin
1995a). Drawbacks are that some subjectivity is involved in choosing the threshold,
and that it does not lend itself to being incorporated into a physical model.

The other approach is to fit a p.d.f. to all the data. Usually this p.d.f. comprises a
mixture of a GPD or equivalent, to capture the high-concentration behaviour, with
another p.d.f. designed to capture the behaviour of the bulk of the concentration
values. Examples are a mixture of GPD and exponential distribution (Lewis &
Chatwin 1995b, 1997), and a mixture of GPD and beta distribution (Munro,
Chatwin & Mole 2003a). This approach has the disadvantages of being influenced
by any problems with the data at small concentrations, and of the fitting not being
specifically tailored to the high concentrations. It is also not straightforward to use it
in a physical model.

Here we choose instead to use a method based on moments. Advantages of this
are that it is simple, and that it is easier to produce physical models for the moments
than for the p.d.f. itself. Furthermore, the experimental record lengths (or number of
realizations for a non-steady release) required to obtain good estimates of the first few
moments that we use are small compared with those needed to capture rare events
in the tails. (In effect we are extrapolating from the first few moments to the very
high moments which correspond to behaviour in the tail, using the assumption that
the tail is described by the GPD.) This is particularly relevant to field experiments,
where long experiments are affected by the inherent non-stationarity of the flow.

First we write the p.d.f. of concentration, p(θ), as

p(θ) = (1 − η)f (θ) + ηg(θ) for 0 � θ � θmax, (2.1)

where g(θ) is the GPD given by (1.7) and η is a positive constant, and we assume
that at high concentrations (i.e. as θ → θmax) f (θ) is insignificant so p(θ) ≈ ηg(θ). If
we let θc be the concentration above which p(θ) ≈ ηg(θ), then the probability that
θ > θc is approximately equal to A, where A is defined by

A = η

∫ θmax

θc

g(θ) dθ = η

(
1 − θc

θmax

)1/k

. (2.2)

Although superficially (2.1) has the form of a mixture of p.d.f.s f and g, in general
this will not be the case. This is because p(θ) ≈ ηg(θ) at large θ , allowing the possibility
of η > 1, and at smaller θ it is possible to have p(θ) < ηg(θ), in which case f (θ) could
be negative, and thus not a p.d.f. If we wish we can rewrite (2.1) as an approximate
mixture of p.d.f.s by splitting p(θ) into the parts above and below θc.

We now define the absolute moments mn by

mn = E {Γ n} =

∫ θmax

0

θnp(θ) dθ, (2.3)
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Figure 2. Linear fits to the moment ratios for data from Sawford & Tivendale (1992). X is
the downstream distance from the source, Z is the cross-stream distance from the centreline,
and L is the mean plume width.

and use (2.1) to obtain

mn = (1 − η)

∫ θmax

0

θnf (θ) dθ + η

∫ θmax

0

θng(θ) dθ

≈ (1 − η)

∫ θc

0

θnf (θ) dθ + η

∫ θmax

0

θng(θ) dθ.

For sufficiently large n the contribution from f will be small compared with that
from g. Thus

mn ≈ η

∫ θmax

0

θng(θ) dθ. (2.4)

For g(θ) given by (1.7), with parameters a and k, we have∫ θmax

0

θng(θ) dθ =
n! an

(1 + k)(1 + 2k) · · · (1 + nk)
. (2.5)

Thus, for sufficiently large n,

mn−1

mn

≈ 1 + nk

na
=

1

a

(
1

n

)
+

k

a
. (2.6)

So at high-order n we expect the ratio of successive moments to be linear in (1/n),
and a linear fit should yield the values of a and k, and of θmax = a/k. Equation (2.4)
can then be used to find η.

Figure 2 shows plots of mn−1/mn against 1/n for the steady line source, grid
turbulence, data of Sawford & Tivendale (1992). X is the downstream distance from
the source, Z is the cross-stream distance from the centreline, and L is the mean
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plume width. The latter is measured as one standard deviation in the cross-stream
profile of C, which is very close to Gaussian (Sawford & Sullivan 1995). In all cases,
including those not shown here, we found a good linear fit down as far as n=4
(and usually a reasonable approximation was achieved as far as n= 3). We identified
the best-fit GPDs by a least-squares fit of (2.6) to the moment ratios for n=4
to 8.

Figure 3 shows corresponding measured p.d.f.s of θ/C0 (i.e. C0p(θ)), with the
best fit GPDs superimposed. As can be seen, the GPD contribution ηg(θ) gives a
reasonable approximation to p(θ) over a considerable range of concentration values.
We estimate the concentration θc, above which this is the case, by choosing θc such
that

|ηg(θ) − p(θ)| <
1

40C
for θ � θc.

In this criterion, we scale the absolute difference by the mean concentration C, to
achieve comparability between different cases. Other possibilities, like scaling the
difference by p(θ), lead to problems when p(θ) becomes small in the tail. Of the
various dimensionally correct scalings one could choose, C seems likely to give the
most robust and sensible results. We tried a range of different numerical factors, and
chose 40 since it appeared to give the best balance between making θc too large or too
small, across the range of spatial positions. The resulting values of θc are indicated
in figure 3 by the dashed lines. Figure 4 shows the percentage of the concentration
range [0, θmax] which lies above θc, and the percentage of the area (given by (2.2))
under this part of the p.d.f. Here, for the centreline, we use the closest measuring
station to the centreline at each downstream distance. These stations have Z/L � 0.2.
On the centreline the GPD accounts for about 40 % of the range, and a little under
10 % of the area. At about 1L from the centreline the GPD accounts for about 80 %
of the range and 20 % of the area. So although the concentrations which are fitted
well by the GPD occur relatively rarely, they form a substantial proportion of the
whole concentration range.

θmax ought to be larger than the largest measured concentration Γmax, but in some
cases, particularly for larger values of k, i.e. for shorter tails, the estimated maximum
θ̂max is slightly less than Γmax. Munro et al. (2001) found that fitting a GPD to high
concentrations using maximum likelihood gave θ̂max/Γmax always greater than 1, with
values up to about 4, but mostly less than 1.5. However, they also used a method based
on linear fits to mean excess plots, and this method did sometimes give θ̂max <Γmax. In
our case, the points shown in figure 2, and also those for the cases not shown, show a
suggestion of a slight curvature, with increasing gradient as n increases. This means
that we may well have underestimated θmax in some cases. However, since the error
in estimating moments from the measurements increases with n, we cannot establish
this with real confidence.

Physical arguments for the variation of the GPD parameters of greatest interest,
i.e. a, k and θmax, are discussed in the next section, and their observed values are
discussed in § 2.4. The centreline variation of the other parameter, η, is illustrated in
figure 5. In applying (2.4) to calculate η we found that there was little variation in the
values obtained from n= 3 upwards, and here we have used the value obtained for
n= 4. Initially η decreases with downstream distance, before reaching a minimum and
then increasing gradually downstream. The cross-stream variation of η is discussed
in § 2.4.
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Figure 3. The measured p.d.f. of θ/C0 (points), and GPD for fitted k and a values (curves).
The right-hand panels show blow-ups of the tails. The dashed lines mark the estimated values
of θc/C0.

2.3. The spatial variation of the GPD parameters: physical arguments

For the rest of this paper we concentrate on the case of a steady line source, and
compare our results with the experimental measurements of Sawford & Tivendale
(1992) for grid turbulence. Many of the principles will also apply, with little
modification, to steady point sources and instantaneous cloud releases. Before



High concentrations of a passive scalar in turbulent dispersion 457

100

80

60

(a)

40

R
an

ge
 (

%
)

20

0 1000 2000

X (mm)

3000

100

80

60

(b)

40A
re

a 
(%

)

20

0 1000 2000

X (mm)

3000

Figure 4. Variation with downwind distance X of the percentage range and area accounted
for by the GPD, i.e. by θ � θc . (a) Range 1 − θc/θmax, (b) area A. The squares represent
centreline measurements, and the crosses measurements at about 1L from the centreline.

2.0

1.5

1.0η

0.5

0
1 10 100

X (mm)
1000 10 000

Figure 5. Variation of centreline η with downstream distance X.

examining the behaviour of the fitted GPD parameters for these measurements,
we give physical arguments for the behaviour we would expect to find.

On the centreline, very close to the source we expect that θmax will tend to the
largest source concentration θ2, and that the centreline mean concentration C0 will
tend to the mean source concentration θ1. Thus, as X → 0 we have

θmax

C0

−→

⎧⎨
⎩

θ2

θ1

(> 1) non-uniform source,

1 uniform source.

Away from the source, but still close to it, molecular diffusion will have little effect, so
θmax will be very close to θ2, but C0 will decrease as the plume spreads and meanders.
By mass conservation, if the mean plume width is L(X), with L(0) = L0, then we
expect C0 = θ1(L0/L)j , where j is 1 for a line source, 2 for a point source and 3 for
an instantaneous release. For the line source this gives

θmax

C0

≈ θ2L(X)

θ1L0

. (2.7)

So close to the source we expect θmax/C0 to increase downstream.
Further downstream we expect (2.7) to provide an upper bound for θmax/C0, since

diffusion reduces θmax while hardly affecting C0. Consider a case when there is an
upper limit l on the length scale of the turbulence, and the fluid is unbounded. (Such
a flow could be approximated, for example, by grid turbulence in a wind tunnel whose
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dimensions are much larger than the mesh length of the grid.) Very far downstream,
eventually the plume width is much greater than l and a state is reached where
the centreline is so far from ambient (i.e. zero concentration) fluid that, before such
fluid can be entrained all the way to the centreline, diffusion will have brought its
concentration into equilibrium with that in the surrounding parts of the plume. This
will be the case if the time taken to diffuse a distance l is much less than the time
taken to advect ambient fluid to the centreline, i.e. L/l is much larger than the
Péclet number, which will be the case far enough downstream. So we expect that the
concentration p.d.f. on the centreline will tend to δ(C0), and θmax will tend to the local
mean concentration, i.e. θmax/C0 → 1. In experiments we are unlikely to approach this
ultimate state, but this argument does suggest that as one goes downstream θmax/C0

increases away from the source, reaches a maximum and then decreases towards 1.
Variations of θmax result from variations in the amount by which molecular diffusion

reduces concentrations. In the cross-stream direction we expect that, far enough from
the centreline, θmax will tend to zero, since any source fluid arriving far out will have
taken a long time to get there, during which diffusion reduces the concentrations
virtually to zero. C also decreases away from the centreline, mainly because of
the increasing rarity of sheets and strands containing high concentrations, an effect
associated with the relatively fast-acting turbulent advection. Diffusion acts on a
much slower time scale, so we expect θmax to decrease more slowly away from the
centreline than does C, i.e. θmax will decrease on a scale much larger than L. (In
the limiting case of zero molecular diffusion the concentration always remains at its
source value. In this case θmax is uniform in space, and equal to the maximum source
concentration, while the mean concentration decreases away from the centreline,
because of turbulent advection.) Thus we expect that θmax/C → ∞ as C/C0 → 0, with
θmax/C0 → 0. In practice we can only make reasonable measurements of the moments
out to |Z|/L ∼ 2, and over this range we expect θmax to be almost constant. This picture
is consistent with the time series of concentration shown in figure 1 of Mylne & Mason
(1991). That figure shows the typical spiky nature of concentration traces. The largest
concentration at the centreline position is a little more than 3C, and at the position
away from the centreline it is of order 30C. At a fixed off-centreline distance, far
downstream the argument used above for the centreline still applies (but the further
from the centreline, the further downstream one has to go before the asymptotic
result is approached), so we expect that

θmax

C0

−→ C

C0

as X → ∞.

Far downstream, since we expect the p.d.f. to approach a delta function, we expect
k to become large, with the GPD having the type of shape illustrated in figure 1(c).
For a uniform source, on the centreline this will also be true close to the source.
So we might expect that on the centreline k has a minimum at some downstream
distance. Far from the centreline we expect the highest concentrations to occur only
rarely, suggesting the shape in figure 1(a), and thus k < 0.5. As with θmax, we expect
k to vary more slowly than C in the cross-stream direction, since it is determined by
the distribution of high concentrations and so is controlled by molecular diffusion.

2.4. The observed spatial variation of the GPD parameters

Figure 6(a) shows the observed variation with downstream distance of the centreline
values of k, a/C0 and θmax/C0, estimated from the data of Sawford & Tivendale
(1992). As expected, θmax/C0 increases away from the source, to a maximum of about
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4.75 at a downstream distance of about 250 mm, before decreasing to about 2.75 at the
furthest distance of 2600 mm. Figure 6(a) also confirms that, as expected, k decreases
to a minimum, before increasing further downstream. In figure 6(b) we compare the
relatively near-source behaviour of θmax/C0 with an estimate of the behaviour in the
absence of molecular diffusion. In the no diffusion case we use (2.7), and assume that
(following the classical large-time fluid particle analysis of Batchelor 1949)

L(X)

L0

=
√

1 + γX, (2.8)

where γ is a constant, i.e. a form which satisfies L(0) = L0 and is consistent with the
expected square root dependence on X far downstream. The parameters in this form
were determined by fitting to the measured values of θmax/C0 at 10 mm and 15 mm
(on the assumption that diffusion will have had relatively little effect there), giving
θ2/θ1 ≈ 1.20. (Note that if (2.8) is replaced with a near-source behaviour with X

replaced by X2, then the estimated value of θ2/θ1 becomes 1.75.) As expected, this
estimate is progressively larger than the measured values of θmax/C0, showing the
cumulative effect of molecular diffusion.

Figure 6(a) shows that a/C0 varies relatively little, with values quite close to 1
for all downstream distances. This implies that θmax/C0 and k are roughly inversely
proportional, as seen in the figure.

Figure 7 shows the variation of the parameters across the plume. There is no clear
pattern to the variation of θmax, although most of the values are a little larger than
on the centreline. However, on physical grounds there is no reason to believe that the
maximum concentration would increase away from the centreline. The values seen here
probably just reflect the inevitable uncertainty in the estimates. This uncertainty would
be expected to increase away from the centreline, and also as one goes downstream,
which is consistent with the observed scatter in these results. It may also be that
any underestimation of θmax is greater on the centreline. The conclusion we draw
is that θmax is roughly constant across the plume, at least as far out as reasonable
measurements can be made, consistent with the arguments advanced above. The
values of θmax/C at the smallest values of C/C0 shown in figure 7(a) are an order
of magnitude larger than the values of θmax/C on the centreline, consistent with our
argument above that θmax/C → ∞ in the periphery.

Munro et al. (2003a) analysed data from a point source field experiment, in the
relative frame of reference. They found that θmax decreased to about 25 % of its
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centreline value by distances of 3L–4L from the centreline (see figure 4 of Munro,
Chatwin & Mole 2003b for the cross-plume variation of C). The measurements in that
experiment were made by a Lidar, with a spatial resolution of about 1.4 m. The thin
sheets and strands containing the largest concentrations would not be resolved in this
case, with a consequent reduction in the highest measured concentrations. Further
from the centreline the sheets and strands are more sparsely distributed (the main
cause of the decrease of C), and the lack of resolution would cause larger reductions
in measured high concentrations. We believe this explains most of the cross-plume
variation of θmax found by Munro et al. (2003a).

In the experiments analysed here, the spatial resolution is limited by the cold wire
length of 0.4 mm, which is comparable to the conduction cutoff length λc. (Temporal
resolution is much better than λc/U and so should be less of a problem.) So we expect
that there will be some smoothing of the very smallest scales in the concentration
field. Highest concentrations would be reduced most so, as well as reducing θmax,
smoothing would probably increase k and decrease a. It would also reduce β but,
because of the normalization of moments, the effect on other parameters used in our
modelling, like α and an, is unclear but probably small.

From figure 7, k and a both appear to decrease away from the centreline, but
the magnitude of the decrease is fairly small, as expected, except at the further
downstream positions where the uncertainty is likely to be larger. The larger decrease
further downstream might also be a reflection of the relatively faster action of
diffusion once the scalar is found in thin sheets and strands: see the arguments in the
Appendix.
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η decreases away from the centreline. If we denote the centreline value of η by
η0, then η/η0 is close to being equal to C/C0. If (2.4) held for n= 1, so even the
mean concentration m1 (= C) were dominated by the GPD tail, then we would have
C ≈ ηa/(1 + k). Since we do not expect a and k to vary much across the plume, and
since they both appear to decrease away from the centreline, we would then expect
that η/C would be fairly constant across the plume, giving η/η0 ≈ C/C0.

3. Deriving properties of high concentrations from the moment model
3.1. The relationship between the parameters describing the moments

The expressions for the central moments, (1.6), can be used to calculate the absolute
moments mn, defined by (2.3). Letting

Mn =
mn

Ĉ(αβC0)n
, B =

1

β
, D =

(
1

β
− 1

)
Ĉ,

we obtain

M2 = 1 + (B + 1)D,

M3 = λ2
3 + 3D + (B + 2)D2,

M4 = λ3
4 + 4λ2

3D + 6D2 + (B + 3)D3,

M5 = λ4
5 + 5λ3

4D + 10λ2
3D

2 + 10D3 + (B + 4)D4,

...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

We now consider the behaviour of the nth moment, at a fixed downstream distance,
as we go far from the centreline. We then have D 	 1, so

Mn ≈ λn−1
n . (3.2)

Now,

μn = mn − nCmn−1 + 1
2
n(n − 1)C2mn−2 + · · · + 1

2
n(n − 1)(−C)n−2m2 − (n − 1)(−C)n.

By (2.4) and (2.5) we have

mn

nCmn−1

≈ a

C(1 + nk)
=

θmax

C(n + 1/k)
.

If we assume that k does not tend to zero far from the centreline, which seems
consistent with figure 7(b), then, since θmax/C → ∞, we also have mn/(nCmn−1) → ∞
far from the centreline. So we then have

μn ≈ mn, (3.3)

giving

Kn ≈ λn−1
n

Ĉn/2−1

 1.

Equation (1.5) shows that

Kn ≈ anK
n−2
3 ,

and combining these two results we have

λn−1
n ≈ anλ

2(n−2)
3 . (3.4)
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This result was derived previously by Schopflocher et al. (2007). Since we expect λn

and an to be approximately constant across the plume, (3.4) applies everywhere, even
though it is derived by considering the plume periphery. So the moments can be
characterized in terms of α, β , λ3 and the an. An advantage of using an rather than λn

is that the an can be determined more easily from measurements at just a few points.
Combining (3.1) and (3.4) gives

M2 = 1 + (B + 1)D,

M3 = λ2
3 + 3D + (B + 2)D2,

M4 = a4λ
4
3 + 4λ2

3D + 6D2 + (B + 3)D3,

M5 = a5λ
6
3 + 5a4λ

4
3D + 10λ2

3D
2 + 10D3 + (B + 4)D4,

M6 = a6λ
8
3 + 6a5λ

6
3D + 15a4λ

4
3D

2 + 20λ2
3D

3 + 15D4 + (B + 5)D5,

...

Mn = anλ
2(n−2)
3 + nan−1λ

2(n−3)
3 D + 1

2
n(n − 1)an−2λ

2(n−4)
3 D2,

+ . . . + 1
2
n(n − 1)Dn−2 + (B + n − 1)Dn−1,

...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.5)

3.2. Reduction of the number of parameters

We now show that, by considering the behaviour far from the centreline, we can
reduce the number of parameters needed to describe the moment structure to just
five, namely α, β , λ3, a4 and a5.

By the definition of Mn we have

mn−1

mn

=
Mn−1

αβC0Mn

.

We can then write (2.6) as

Mn−1

Mn

≈ 1

a′

(
1

n

)
+

k

a′ , (3.6)

where

a′ =
a

αβC0

.

Using (3.5) then allows us to model the distribution of high concentrations in terms
of the parameters α, β , λ3 and an which describe the moment structure.

As before, we can make progress by considering the plume periphery, where D → 0.
We then have

Mn ≈ anλ
2(n−2)
3 + nan−1λ

2(n−3)
3 D,

giving

Mn−1

Mn

≈ an−1

λ2
3an

{
1 +

[
(n − 1)an−2

an−1

− nan−1

an

]
D

λ2
3

}
. (3.7)

First, we consider only the leading-order term on the right-hand side. Given the
behaviour of the measured moments discussed in § 2.2 (and analysis of the Lidar
data used in Munro et al. 2003a, b also gives a good linear fit down to n= 4: R. J.
Munro, personal communication) it seems reasonable to assume that (3.6) holds down
to n= 4. Then we can use the ratios for n= 4 and n= 5 (with a3 ≡ 1) to determine
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k and a′:

k ≈ 5a2
4 − 4a5

20(a5 − a2
4)

(3.8)

and

a′ ≈ λ2
3a4a5

20(a5 − a2
4)

. (3.9)

Since we also expect (3.6) to hold for n= 6, 7, . . . this implies that a6, a7, . . . can all
be expressed in terms of a4 and a5. We find that

an

an−1

=
na4a5

(5n − 20)a2
4 − (4n − 20)a5

for n = 6, 7, . . . . (3.10)

In particular, this gives

a6 =
3a4a

2
5

5a2
4 − 2a5

. (3.11)

Figure 8 compares the measured a6 with (3.11), using the values of a4, a5 and a6

determined by Schopflocher et al. (2007). The agreement is very good. Thus, by
considering high concentrations far from the centreline, we have shown that the set
of parameters describing the moment structure can be reduced to only five: α, β , λ3,
a4 and a5.

3.3. A model for the maximum concentration

We can rewrite (3.10) as

an−1

an

=
1

r

{
1 − 20

n

(
a2

4 − a5

5a2
4 − 4a5

)}
, (3.12)

where

r =
a4a5

5a2
4 − 4a5

. (3.13)

We then obtain
(n − 1)an−2

an−1

− nan−1

an

= −1

r
,

so (3.7) becomes

Mn−1

Mn

≈ 1

λ2
3r

{
1 − 20

n

(
a2

4 − a5

5a2
4 − 4a5

)} (
1 − D

λ2
3r

)
. (3.14)
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Comparing (3.6) and (3.14) we find that k satisfies (3.8) even when we include the
next order term. Since it is this next order term, containing D, which first introduces
cross-stream variations, this suggests that we might expect k to be approximately
constant across the plume. In fact, the full calculation, as discussed below, shows that
k decreases slightly away from the centreline, as found in figure 7(b) for the measured
values.

Comparing (3.6) and (3.14) also allows us to determine θmax/C0 = αβa′/k:

θmax

C0

≈ αβλ2
3a4a5

5a2
4 − 4a5

+ (1 − β)
C

C0

. (3.15)

Note that the only place where the large n approximation has been used in this
derivation is in obtaining (3.6). The total cross-plume variation of θmax/C0 given by
(3.15) is 1 − β , with the largest value on the centreline. For the Sawford & Tivendale
(1992) data the measured values of β are all between 0.62 and 0.85, so this variation
is small.

The physical arguments in § 2.3 suggested that far enough from the centreline
θmax/C0 would tend to zero. This is consistent with (3.15), since, at the off-centreline
distances where diffusion has had time to reduce θmax/C0 significantly, we also expect
diffusion to have reduced β significantly. Far downstream the total time for diffusion
to occur also increases, and eventually we expect β → 0, even on the centreline.
Equation (3.15) then suggests that

θmax

θ0

−→ C

C0

,

in exact agreement with the limit predicted by the physical arguments in § 2.3.
The asymptotic expression (3.7), used to derive (3.15), is strictly only valid in the

plume periphery. As we go towards the centreline, C/C0 no longer gives a small
correction in general, so (3.15) will not necessarily give the correct asymptotic result.
Nevertheless, we might hope that it still gives a reasonable first guess for θmax/C0.
If we want to find the model predictions for k and θmax/C0 without assuming small
C/C0, and hence small D, then we need to calculate the moment ratios using the full
expressions in (3.5), together with (3.10). Figure 9 shows some linear fits obtained in
this way. As with figure 2, we find a good fit down to n= 4.

In figure 10 we compare the resulting variation of k with that predicted by
the asymptotic result (3.8). The asymptotic result is very accurate, except near the
centreline relatively close to the source. The full result shows that k decreases slightly
away from the centreline, as found for the measured values in figure 7(b).

Figure 11 compares the full and asymptotic results for θmax/C0. The difference
between these results is very small, and much less than the expected uncertainty in
the direct experimental estimates of θmax/C0. Except for a small range of C/C0 values
at X = 300 mm, (3.15) slightly overestimates θmax/C0. We can use the asymptotic result
(3.15) as our model prediction for θmax/C0 without any real loss.

3.4. Comparison of model predictions with experimental data

Figure 12 compares the downstream variation of the model predictions (using the
measured values of α, β , λ3, a4 and a5) for θmax/C0, k and a/C0 with that for
the experimentally estimated values in figure 6. The model predictions for θmax/C0

increase downstream, but are larger than the estimates. Beyond X =300 mm they
become unreliable, with negative or very large values. (We note that as we go
downstream, and particularly beyond 300 mm, the variation in values of α, β and λ3

between repeat measurements increases significantly; we have used averaged values.)
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Figure 9. Linear fits to the moment ratios calculated from (3.5) and (3.10).
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The predictions for k tend to decrease, but are too small, and at large X they become
close to zero rather than increasing again. The very small values of the predicted k at
large X mean that small uncertainties in k will lead to large uncertainties in θmax/C0.
The predicted values of a/C0 follow the same trends as the estimated values, but are
roughly a factor of 2 smaller.
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Figure 11. θmax/C0 calculated from (3.5) and (3.10) (triangles), and calculated
from (3.15) (line).
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Figure 12. (a), (b) and (c) give the comparison on the centreline between model values
calculated from (3.8), (3.9) and (3.15) (crosses), values calculated directly from the
measurements by least-squares fits (squares), and values calculated directly from the
measurements by a linear fit to the moment ratios for n= 7 and n= 8 (triangles): (a) θmax/C0,
(b) k, (c) a/C0. In (d) we show the errors estimated from (3.8), (3.9) and (3.15) under the
assumption that there is a 5 % relative error in a5 (squares θmax/C0, plus signs k, crosses a/C0).
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It is always difficult to make precise estimates of properties, like those shown in
figure 12, of the high concentration tail of the p.d.f. To give a further indication of the
possible level of uncertainty we calculated the errors in θmax/C0, k and a/C0 (estimated
from (3.8), (3.9) and (3.15)) which would result from errors in a5. Figure 12(d) shows
the results for a relative error in a5 of 5 %, using the estimated values of a4 and a5 at
each downstream distance. At most distances this results in the estimate of θmax/C0

being nearly two times too large, and at large X the errors become very variable. This
is broadly consistent with what we see in figure 12(a–c). Given the possible level of
uncertainty, the agreement in figure 12(a–c) is fairly reasonable.

We note that although the parameter values used in calculating the model
predictions are derived from the same data set as the estimates of θmax/C0, they are
derived in a rather different manner. The estimates use the concentration moments
at one point in space to give θmax/C0 at that point. On the other hand, at each
downstream distance, α, β and λ3 are estimated from the relationship between the
2nd and 3rd moments and C in the plume cross-section; a4 and a5 are estimated from
the relationship between the normalized 4th and 5th moments and the skewness, in the
plume cross-section. So there is no direct connection between the model predictions
and the estimates of θmax/C0 that were compared, other than those which reflect an
underlying physical structure.

In addition to the uncertainty discussed above, a possible partial explanation of
the differences between the model predictions and the estimated values shown in
figure 12 can be provided by the argument given at the end of § 2.2. If the gradient
of the linear fits to the moment ratios is underestimated then the result is that θmax

is underestimated and a is overestimated. Therefore, k will be overestimated by a
combination of both these factors. To test this argument, in figure 12(a–c) we also
show the values calculated from a linear fit to the moment ratios for n= 7 and n= 8.
These give a significantly better agreement for k and a/C0, and a slightly better
agreement for θmax/C0, but they are more noisy. If we used a similar linear fit for
larger n we might expect even better agreement, but at the expense of greater noise.
Even given this improved agreement, it still seems that the model predictions of
θmax/C0 might well be greater than the direct estimates, so the model would give a
conservative estimate of the maximum concentration.

4. Discussion
4.1. General discussion and conclusions

Arguments based on the small-scale physics of turbulent dispersion suggest that
the high-concentration tail of the p.d.f. of concentration ought to have a universal
character. The abstract arguments of statistical extreme value theory suggest that
the high-concentration tail ought to be well approximated by a Generalized Pareto
Distribution. Together, these provide a compelling argument for universal high-
concentration GPD tails. This is borne out by direct fits to measured concentrations
in a variety of experiments, both in the field and the wind tunnel (Lewis & Chatwin
1995b; Mole et al. 1995; Anderson et al. 1997; Munro et al. 2001; Schopflocher 2001;
Schopflocher & Sullivan 2002). A number of methods have been used to fit GPD tails
to experimental data, and it is possible to construct statistical models based on these
fits. However, these methods do not easily lend themselves to physical modelling of
the high concentrations.

Direct numerical simulation (DNS) would, in principle, be able to predict the
high-concentration tails, but modelling the tails would place even larger demands
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on computing power than in more common applications of DNS. Using large
eddy simulation (LES) would reduce the demands on computing power, but the
parametrized small scales are those on which the largest concentrations are found,
although Xie et al. (2007) had reasonable success using LES to model the maximum
concentration from point sources in a boundary layer. It is not clear that the kind
of p.d.f. methods described, for example, in § 12.7.4 of Pope (2000) will perform
well in the high-concentration tails. Most other physical modelling approaches are
based on concentration moments, so a method of connecting moments to the high-
concentration tails would be a great advantage.

In § 2.2 we derived such a method. We found an approximate linear relationship
between the ratios of successive moments, and the reciprocal of the moment order.
We found that this relationship, given by (2.6), gave an excellent fit to the measured
moment ratios. The parameters of the GPD tail are determined by this linear fit. Thus,
using this method, any model which predicts a sufficiently large number of moments
would be able to predict the behaviour at high concentrations. In particular, it would
allow the prediction of the maximum possible concentration θmax. We analysed the
measurements of Sawford & Tivendale (1992), for a steady line source in wind tunnel
grid turbulence. If the results that we obtained for the moment ratios, shown in
figures 2 and 9, are typical, then reasonable estimates can probably be obtained from
the first 5 or 6 moments.

Using the relationships between moments proposed by Chatwin & Sullivan (1990a),
Sawford & Sullivan (1995) and Mole & Clarke (1995), we derived an analytical
expression (3.15) for θmax/C0, where C0 is the centreline mean concentration. This
expression depends on the parameters α, β , λ3, a4 and a5, and (weakly) on C/C0,
where C is the local mean concentration. The comparison, in § 3.4, between this model
expression and θmax/C0 estimated directly from (2.6) shows promise, suggesting that
the model gives a good first guess for θmax/C0. In the next section we discuss possible
methods for modelling the parameters.

4.2. Modelling of the parameters

To model θmax, independently of any particular experimental measurements, we then
need models for the parameters α, β , λ3, a4 and a5, and for C/C0. Since models for
C are the subject of an extensive literature (see e.g. Anand & Pope 1985 for a model
for C for a line source in grid turbulence), and since in our models θmax/C0 depends
only weakly on C/C0, we shall only deal with possible approaches to modelling the
parameters.

Since α, β , λ3, a4 and a5 are determined by relationships between the first 5
concentration moments, any model for the spatial variation of these moments would,
in principle, also yield these parameters. Here we shall consider approaches based on
our own moment models, referred to above.

Clarke & Mole (1995), Labropulu & Sullivan (1995) and Mole (1995, 2001)
considered ways to model α and β (in effect λ3 was taken to be 1). These were
all based on integrating moments over ‘all space’ (which in the present context
means throughout the plume cross-section), and making a closure assumption for
E

{
Γ n−2(∇Γ )2

}
in terms of the moments, where Γ is the concentration. These models

have been shown to give qualitative agreement with observation, although it remains
to carry out a thorough quantitative assessment against measurements. For modelling
α and β , the evolution equations for the 2nd and 3rd moments were used. For a
steady line source, in these models far downstream α tends to a constant (≈ 1.182
in Mole 2001, and an indeterminate, but probably order 1, constant in Labropulu &
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Sullivan 1995) and β → 0, with β ∝ X−1/2. We note that these models all assume that
β is constant throughout the plume cross-section, whereas we expect that very far
from the centreline β will tend to zero. So these models ought to be relevant to the
range over which reliable measurements can be made, but not beyond that.

When the λn (�= 1) are included, the same approach could still be used, but the
equations for the fourth to sixth moments would also need to be used. Then λ4, λ5

and λ6 would be replaced using (3.4), and a6 would be replaced using (3.11). This
would then give a set of five equations for the five unknowns. If we could derive
independent expressions for a4 and a5 then the number of simultaneous differential
equations needing to be solved would be reduced, and we consider one such possibility
below.

We assume that far from the centreline η becomes small. This is supported by
figure 7(d). Far from the centreline, from (1.3), (2.4), (2.5) and (3.3) we have

σnKn ≈ η n! an

(1 + k)(1 + 2k) · · · (1 + nk)
, (4.1)

where σ = (μ2)
1/2 is the standard deviation of concentration. In particular, we have

σ 2 ≈ 2η a2

(1 + k)(1 + 2k)
,

σ 3K3 ≈ 6η a3

(1 + k)(1 + 2k)(1 + 3k)
.

The approach of Mole & Clarke (1995) gives

σ 2(n−3)(σnKn) = an(σ
3K3)

n−2 + bnσ
6(σ 3K3)

n−4 + · · ·

To leading order in the small parameter η we determine an (the next order determines
bn, and so on):

an =
n! (1 + 3k)n−3

2 × 3n−2(1 + 4k)(1 + 5k) · · · (1 + nk)
. (4.2)

This is essentially an extension of the result given in equation (A.5) of Lewis et al.
(1997). In particular, (4.2) gives

a3 = 1, a4 =
4(1 + 3k)

3(1 + 4k)
, a5 =

20(1 + 3k)2

9(1 + 4k)(1 + 5k)
.

For k > 0 these give 1<a4 < 4/3 and 1 <a5 < 20/9. Most experimentally determined
values of a4 and a5 fall within these ranges.

In figure 13(a) we show the resulting values of a4 and a5, calculated using estimated
peripheral values of k. We estimated these very roughly, by taking the measurements
of k closest to and furthest from the centreline, and linearly extrapolating to C/C0 = 0.
Also plotted are the directly measured values of a4 and a5. The agreement is
reasonable, except at the furthest downstream positions, but the measured values
are slightly larger. If we invert the above relationships, we can use the measured
values of a4 and a5 to estimate the peripheral k. These modelled values of k are
plotted in figure 13(b), together with the measured centreline values of k. The
modelled values obtained from a4 and from a5 agree with each other fairly well. If we
ignore the furthest downstream positions, where variability in measured parameters
is significant and some of the modelled k values become negative, then the modelled
peripheral k values are about 40–70% of the measured centreline values, with this
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Figure 13. (a) Measured a4 (�), modelled a4 (×), measured a5 (�) and modelled a5 (+),
(b) Measured centreline k (�) and modelled peripheral k using a4 (×) and a5 (+).

proportion decreasing downstream, in rough agreement with what one would expect
from figure 7(b). These results seem to provide support for the model relating a4 and
a5 to k.

Combining the expressions for a4 and a5 we have

a5 =
5a2

4

8 − 3a4

.

So we can treat a5 as being determined by either k or a4, thus reducing by one the
number of parameters needing to be modelled. We note also that (4.2) gives

an

an−1

=
n(1 + 3k)

3(1 + nk)
=

na4a5

5(n − 4)a2
4 − 4(n − 5)a5

, (4.3)

in agreement with (3.10). Since

n(1 + 3k)

3(1 + nk)
= 1 +

n − 3

3(1 + nk)
,

(4.3) shows that the an form a monotonically increasing sequence, with an → ∞ as
n → ∞.

If we now substitute for a4 and a5 in (3.15), we obtain

θmax

C0

≈ αβλ2
3

(
1 +

1

3k

)
+ (1 − β)

C

C0

. (4.4)

Equation (4.2) was derived by considering the plume periphery. The an are constant
across the plume, but k may vary, so the value of k in (4.4) is that appropriate to the
periphery. Far downstream we expect that α and λ3 will tend to constants, and that
k → ∞ and β → 0. From (4.2) we then expect that an → 1, and (4.4) becomes

θmax

C0

∼ αβλ2
3 +

C

C0

.
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Appendix. Thoughts on the Pe and Re dependence of θmax/C0

We let u and l be the velocity and length scales for turbulent velocity fluctuations,
with Péclet number Pe = ul/κ and Reynolds number Re = ul/ν. We also let L be the
mean plume width (i.e. the width of the profile of mean concentration C), L = L0 at
the source, TA be an advection time scale for the reduction of C0, TD be a diffusion
time scale for the reduction of θmax, and λC = (νκ2/ε)1/4 be the conduction cutoff
length.

A.1. Relative time scales and the spatial variation of θmax/C0

A.1.1. Downstream variations

If λC � L0 then near the source we expect the relevant length scale for both the
spreading of the mean plume (and, hence, the reduction of C0) and the reduction of
θmax by diffusion to be the mean plume width L. Thus

TA =
L

u
and TD =

L2

κ
,

so
TD

TA

=
uL

κ
=

(
L

l

)
Pe.

Pe is large, and near the source L/l will usually be small. In the Sawford & Tivendale
(1992) experiments l/L0 ∼ 100 and Re based on mean velocity is 8500. If we assume
that the Schmidt number is of order 1, and u is an order of magnitude smaller than
the mean velocity, then Pe is of order 1000 and

TD

TA

∼ 10.

In this regime the reduction of θmax proceeds more slowly than the reduction of C0,
so as we go away from the source θmax/C0 increases.

Once we are far enough downstream for the mean plume to be wider than the
turbulence length scale, i.e. l � L, then, if we assume that concentration is now found
largely in sheets and strands of thickness close to the conduction cutoff,

TA =
l

u
and TD =

λ2
C

κ
=

(ν

ε

)1/2

,

so

TD

TA

= Re−1/2

(
u3

εl

)1/2

∼ Re−1/2 	 1.

So in this regime we expect that θmax is reduced more quickly than C0, so θmax/C0

decreases with downstream distance.
This argument suggests that as one goes downstream from the source, θmax/C0 first

increases, reaches a maximum, and then decreases.

A.1.2. Cross-stream variations

Near the source, since diffusion acts relatively slowly, we expect θmax to decrease
slowly away from the centreline, i.e. on a length scale larger than L.

Far downstream the argument in the previous subsection suggests that θmax

decreases rapidly relative to C0. But at this point the cross-stream profile of θmax

is already much wider than L. Far from the centreline the relative difference in time
scales will probably set in earlier than on the centreline, so the far fringes of the θmax
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profile will be reduced relative to the C profile, and the widths of the θmax and C

profiles will gradually get closer. This is consistent with our argument in § 2.3, which
suggested that very far downwind θmax ∼ C.

A.2. The effect of varying Pe and Re

A.2.1. Varying κ with fixed ν, u and l

Near the source, increasing κ (i.e. decreasing Pe) gives smaller TD without affecting
TA. Thus we expect smaller θmax, with unchanged C0, i.e. smaller θmax/C0.

Far from the source, TD and TA are unaffected, but larger κ gives smaller θmax/C0

because of the near-source effect.

A.2.2. Varying u with fixed κ , ν and l

Near the source, larger u (i.e. larger Pe and Re) will give larger L and, hence,
smaller C0. Thus TD will also be larger, giving larger θmax, so θmax/C0 is larger.

Far from the source, larger u gives smaller TA and larger ε, and hence smaller TD .
But TD/TA ∝ Re−1/2 is smaller, so θmax/C0 decreases faster. However, as a result of
the near-source behaviour θmax/C0 starts out larger in this regime, so, except possibly
very far downstream, we expect larger θmax/C0.

A.2.3. Varying l with fixed κ , ν and u

Near the source, larger l (i.e. larger Pe and Re) gives larger L and thus larger TD ,
TA and TD/TA. So θmax/C0 will be larger.

Far from the source, larger l gives larger TD and TA, and smaller TD/TA ∝ Re−1/2.
So θmax/C0 decreases more rapidly, but starting from a larger value. So we expect
θmax/C0 to be larger, except possibly very far downstream.

A.2.4. Varying ν with fixed κ , u and l

Larger ν (i.e. smaller Re) gives smaller TD far from the source, without affecting
any of the other time scales. So we expect smaller θmax/C0 far from the source.

A.2.5. Conclusions

The general picture is one where increasing Pe and/or Re will tend to increase
θmax/C0. But the precise relationship seems uncertain, and it will probably also depend
on parameters like L0/λC .
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